ALSERepository of Iași University of Life Sciences, ROMANIA

Advanced Design for Experimental Optimisation of Physico-Mechanical Characteristics of Sustainable Local Hemp Concrete

Show simple item record

dc.contributor.author Adam, Laurențiu
dc.contributor.author Judele, Loredana
dc.contributor.author Motrescu, Iuliana
dc.contributor.author Rusu, Ion
dc.contributor.author Lepădatu, Daniel
dc.contributor.author Bucur, Roxana-Dana
dc.date.accessioned 2024-04-26T10:57:10Z
dc.date.available 2024-04-26T10:57:10Z
dc.date.issued 2023-05-23
dc.identifier.citation Adam, Laurentiu, Loredana Judele, Iuliana Motrescu, Ion Rusu, Daniel Lepadatu, and Roxana Dana Bucur. 2023. "Advanced Design for Experimental Optimisation of Physico-Mechanical Characteristics of Sustainable Local Hemp Concrete" Sustainability 15, no. 11: 8484. https://doi.org/10.3390/su15118484 en_US
dc.identifier.issn 2071-1050
dc.identifier.uri https://www.mdpi.com/2071-1050/15/11/8484
dc.identifier.uri https://repository.iuls.ro/xmlui/handle/20.500.12811/3830
dc.description.abstract The meaning of technological progress is to produce economic development and to increase the level of personal comfort. Sustainability can only be achieved if, at the microsystem level as well as at the macrosystem level, the secondary effects of the activities undertaken by people on the environment are in a state of neutrality compared to the impact they can produce on natural conditions. This neutrality can be intrinsic or can be achieved through coercive and compensatory measures. If we take into account the production of carbon dioxide that accompanies a product from the stages of conceptualisation, design, procurement of materials, execution, operation, maintenance, decommissioning and recycling the waste produced at the end of use, then nothing can be sustainable in pure form. Nevertheless, there are products whose production, both as a raw material and as a technological process, can be neutral in terms of carbon emissions. Moreover, they can even become carbon negative over time. This is also the case with eco-sustainable hemp concrete, whose capacity to absorb carbon dioxide starts from the growth phase of the plant from which the raw material is obtained and continues throughout the existence of the constructed buildings. Not only does it absorb carbon dioxide, but it also stores it for a period of at least 50 years as long as the construction is guaranteed, being at the same time completely recyclable. However, in order to obtain an optimal mixture from the point of view of raw material consumption, represented by industrial hemp wood chips and the binder based on lime and cement, multiple experiments are necessary. The study presented in this work is based on the use of an advanced method of experimental planning (design of experiments method), which makes possible the correlation between the values obtained experimentally and the algorithm that generated the matrix arrangement of the quantities of materials used in the recipes. This approach helps to create the necessary framework for parametric optimisation with a small number of trials. Thus, it is possible to obtain the mathematical law valid within the minimum and maximum limits of the studied domain that defines the characteristics of the material and allows the achievement of optimisation. The material is thus designed to satisfy the maximum thermal insulation requirements that it can achieve depending on a certain minimum admissible compressive strength. en_US
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.en
dc.subject local hemp concrete en_US
dc.subject design of experiments method en_US
dc.subject advanced optimisat en_US
dc.title Advanced Design for Experimental Optimisation of Physico-Mechanical Characteristics of Sustainable Local Hemp Concrete en_US
dc.type Article en_US
dc.author.affiliation Laurentiu Adam, Loredana Judele, Daniel Lepadatu, Faculty of Civil Engineering and Building Services, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
dc.author.affiliation Iuliana Motrescu, Department of Exact Sciences & Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania
dc.author.affiliation Daniel Lepadatu, Transport Infrastructure Engineering Department, Faculty of Urban Planning and Architecture, Technical University of Moldova, 2028 Chisinau, Moldova
dc.author.affiliation Roxana Dana Bucur, Livestock Building Department, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania
dc.publicationName Sustainability
dc.volume 15
dc.issue 11
dc.publicationDate 2023
dc.identifier.doi https://doi.org/10.3390/su15118484


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International